
CSE 291: Operating Systems in Datacenters

Amy Ousterhout

Oct. 24, 2023



Agenda for Today
• Reminders
• Introduction to CPU scheduling
• Shenango discussion



Reminders

• Project check ins
• Sign up if you have not already



CPU Scheduling



Handling Nanosecond-Scale Events

• 2017: “Attack of the Killer Microseconds”
• Hardware can efficiently handle nanosecond-scale events (e.g., 

cache misses, ~100 ns)
• Out-of-order execution
• Hyperthreads (simultaneous multithreading (SMT))
• Prefetching

• Programmers don’t have to think about this

int var1 = *addr;
var1++;
var2++;
var3++;
var4++;

cache miss!

out-of-order 
execution

cache missw/o hyperthreads:

with hyperthreads:

thread 1 thread 2



Handling Millisecond-scale Events

• Millisecond-scale events
• Disk reads – 10s of ms
• Wide-area network traffic – 10s of ms
• Low-end flash – a few ms

• Software can efficiently mask these
• OS can context switch to a different thread (microseconds)

• Programmers can use convenient synchronous (blocking) 
programming models



The Challenges of Microsecond-Scale Events

• But microsecond-scale events remain challenging
• Datacenter RTT - a few μs
• High-end flash – tens of μs
• GPU/accelerator - tens of μs

• Hardware techniques do not scale well
• Not enough independent instructions to fill μs
• Not enough hyperthreads to hide μs

• Software techniques have too high of overhead
• These are the killer microseconds!

• Asynchronous programming can reduce overheads but is 
inconvenient



How Does the OS Add So Much Overhead?

user space
kernel space

hardware

• Focus on the receive path
• Multicore example
• Sources of overhead:

• Context switches
• Lots of queueing
• Load imbalance (balances 

runqueues every 4 ms)
• Packets can arrive at the 

wrong core
• Applications can interrupt 

each other
• Hard to enforce policies

App 1

read()

network 
driver RX

socket

TCP/IP

runqueue

Receive (RX)

interrupts

read()

network 
driver RX

socket

runqueue
load 

imbalance

App 2



Research on CPU Scheduling

theoretical practical

Linux’s Scheduler 
(CFS)

Theory
• Prioritization
• First come first served (FCFS)
• Shortest remaining processing 

time (SRPT)
• Process sharing (PS)
• Etc.

Lots of queueing,
slow context switches, 
load imbalance, 
interference

Assumes known task 
service times, no 
overheads, centralized 
queues

Kernel Bypass Scheduling
• ZygOS (SOSP ‘17)
• Arachne (OSDI ‘18)
• Shenango (NSDI ‘19)
• Caladan (OSDI ‘20)
• Scheduling Policies (NSDI ‘22)

Improve Linux’s Scheduling
• Snap (SOSP ‘19)
• ghOSt (SOSP ‘21)
• Syrup (SOSP ‘21)

Require app changes, don’t 
support many policies or 
support multitenancy

Limitations

Worse performance than 
kernel-bypass approaches



Shenango Discussion


